US009317707B2

a2z United States Patent (10) Patent No.: US 9,317,707 B2
Wang et al. (45) Date of Patent: Apr. 19, 2016
(54) METHOD AND SYSTEM FOR PROTECTING USPC 719/321-327; 713/164-194; 710/1-7,

A DRIVER

(71) Applicant: TENCENT TECHNOLOGY
(SHENZHEN) COMPANY LIMITED,
Shenzhen (CN)

(72) Inventors: Yu Wang, Shenzhen (CN); Wu Haitao,
Shenzhen (CN)

(73) Assignee: TENCENT TECHNOLOGY
(SHENZHEN) COMPANY LIMITED,
Shenzhen (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 37 days.

(21) Appl. No.: 14/156,540

(22) Filed: Jan. 16, 2014
(65) Prior Publication Data
US 2014/0129846 Al May 8, 2014

Related U.S. Application Data

(63) Continuation of application No.
PCT/CN2012/078041, filed on Jul. 2, 2012.

(30) Foreign Application Priority Data
Jul. 28,2011 (CN) ccoveevevvcriennee 2011 1 0213910
(51) Imt.ClL
GO6F 21/00 (2013.01)
GO6F 21/62 (2013.01)
(Continued)
(52) US.CL
CPC GO6F 21/6209 (2013.01); GOGF 21/51
(2013.01); GOG6F 21/54 (2013.01);
(Continued)
(58) Field of Classification Search
CPC ... HO4L 63/04; HO4L 63/12; HO4L 63/16;

GOGF 21/05; GOGF 21/06; GOGF 21/07;
GOGF 2003/0697; GOGF 13/10; GOGF
17/30141; GOGF 3/06

710/20-21, 29-51; 726/26-30
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,024,593 B1* 4/2006 Buddetal.ccccoenennn 714/48
7,577,985 Bl 8/2009 Urosu
(Continued)

FOREIGN PATENT DOCUMENTS

CN 1591329 A 3/2005
CN 1900940 A 1/2007
(Continued)
OTHER PUBLICATIONS

International Search Report for PCT/CN2012/078041 dated Oct. 18,
2012.

(Continued)

Primary Examiner — Madhuri Herzog
(74) Attorney, Agent, or Firm — Marshall Gerstein & Borun
LLP

(57) ABSTRACT

Various examples of the present disclosure provide a method
and a system for protecting a driver. The method includes
encrypting a program file, and sending an Input/Output
Request Package (IRP) and the encrypted program file;
receiving the IRP and the encrypted program file, decrypting
the encrypted program file, verifying the decrypted program
file; and, if verification is passed, returning a handle, other-
wise, not returning the handle. In the examples of the present
disclosure, the program file of the application layer is
encrypted, and the encrypted program file is sent when the
IRP is sent; the driver layer decrypts and verifies the
encrypted program file, and returns the handle to the applica-
tion layer when the verification is passed, so that the applica-
tion layer can access the driver layer through the handle; ifthe
verification is not passed, the driver layer rejects the access of
the application layer. Therefore, a legitimate application layer
can communicate with the driver layer, a suspicious program
is prevented from accessing the driver layer, and the security
of the driver layer is improved.

14 Claims, 4 Drawing Sheets

a program file is encrypted, the encrypted 8110
program file and an IPR are sent

the IRP and the encrypted program file are
received, the encrypted program file is decrypted, 8120
and the decrypted program file is verified

not retumed

US 9,317,707 B2

Page 2

(51) Int.Cl. 2006/0265757 A1* 11/2006 Endoh HO4M 1/72522

GO6F 21/70 (2013.01) 726/26

HO4L 29/06 (2006.01) 2008/0209563 Al 8/2008 Rogers et al.

GO6F 21/51 (2013.01) 2011/0047305 ALl* 22011 Kim ..covvvvrvrennrne, GOG6F 21/82

GOGF 21/54 (2013.01) 710/63
- goséFCi/ 06 (2006.01) FOREIGN PATENT DOCUMENTS

CPC ... GO6F 21/70 (2013.01); HO4L 63/12 CN 101008974 A 8/2007

(2013.01); HO4L 63/126 (2013.01); GO6F CN 101447007 A 6/2009
3/062 (2013.01); GO6F 3/0653 (2013.01)
OTHER PUBLICATIONS

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0177435 Al* 9/2003 Buddetal ... 714/776

2006/0069692 Al 3/2006 Pernia

2006/0253859 Al* 11/2006 Daiccooovvvviiinne GOG6F 9/545
719/321

International Preliminary Report on Patentability from PCT/
CN2012/078041 dated Jan. 28, 2014.

Office action from Chinese Application No. 201110213910.4 dated
Jun. 19, 2013.

* cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 4 US 9,317,707 B2

a program file is encrypted, the encrypted | —S110
program file and an PR are sent

'

the IRP and the encrypted program file are
received, the encrypted program file is decrypted, |~ S120
and the decrypted program file is verified

N
Y

S130

l ~—S150 Yy ,—S140
The handle 1s the handle
not returned 1s returned

-

FIG. 1

U.S. Patent Apr. 19,2016 Sheet 2 of 4 US 9,317,707 B2

the program file is read out

'

a message digest value of the program file is | — S§220
calculated

'

the asymmetric encryption is performed to the | — S230
message digest value

the asymmetrically-encrypted message digest | _— gp4()
value is written to an end of the program file

end

FIG. 2

U.S. Patent Apr. 19,2016 Sheet 3 of 4 US 9,317,707 B2

the asymmetrically-encrypted message digest 3310
value is read out and decrypted to obtain the ¢~
decrypted message digest value

a message digest value of the program file is

calculated, and the calculated message digest | — S320

value is compared with the decrypted message
digest value

atculated messagedigest
value is the same as the decrypted

S330

N |
Y
5350 ¥ 5340
The handle is the handle
not returned 1s returned
>
end

FIG. 3

US 9,317,707 B2

Sheet 4 of 4

Apr. 19,2016

U.S. Patent

€7 dnpow-qns

5 & | uonediyuda pue uondAroop
> <t
<
o !
=
X
S g [¢y s[npowi-qns
UOIBITUNUWIIO) PUOIIS
5 ¢y o[npow-gns
mJ = UOTBITUNWITIOD JSIIJ
4
S 2
-Lu u
S 2
e B K
&

dnpow-qns uondAIdud

FIG. 4

US 9,317,707 B2

1
METHOD AND SYSTEM FOR PROTECTING
A DRIVER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Appli-
cation No. PCT/CN2012/078041, filed on Jul. 2, 2012. This
application claims the benefit and priority of Chinese Patent
Application No. 201110213910.4, filed on Jul. 28,2011. The
entire disclosures of each of the above applications are incor-
porated herein by reference.

FIELD OF THE INVENTION

The present invention relates to a driver protecting field,
and more particularly, to amethod and a system for protecting
a driver.

BACKGROUND OF THE INVENTION

An Input/Output (I/O) Request Package (IRP) is a kind of
data structure in the Windows kernel, and is associated with
1/0. When an application at an upper layer communicates
with a low-level driver layer, the application sends an I/O
request. The operating system convers the /O request into
corresponding IRP data. The IRP data with different types are
transmitted to different dispatch functions based on the type
of the IPR data.

The IRP has two basic attributes. One is a major function
(MajorFunction), which is configured to record a major type
of'the IRP, and associate the major function of the IRP with a
dispatch function. The other is a minor function (MinorFunc-
tion), which is configured to record a subtype of the IRP. The
operating system dispatches the IRPs to different dispatch
functions according to the MajorFunction. In the dispatch
function, it may continue to determine which MinorFunction
the IRP belongs to. Functions related to the file I/O, such as a
function of creating a file kernel object (CreateFile), a func-
tion of reading a file (ReadFile), and a function of writing a
file (WriteFile), etc., can create IRPs with corresponding
types, such as an IPR with a creating type (IRP_MJ_CRE-
ATE), an IPR with a reading type (IRP_MJ_READ), and an
IPR with a writing type (IRP_MJ_WRITE), etc. These IRPs
are transmitted to the dispatch functions at the driver layer. In
this case, the CreateFile function is configured to create or
open an object, and return a handle that may be used to access
the object; the ReadFile function is configured to read out data
to a file from a position where a file pointer points to, and
supports both synchronization and asynchronization; the
WriteFile function is configured to write data to a file.

In the operating system, if an application wants to open the
driver layer, the IRP_MJ_CREATE may be sent to the driver
layer firstly, and the driver layer may return a handle after a
dispatch function performs appropriate processing. In this
case, the handle is an integer value, and is used to identify
different objects of the application in the application layer,
and to identify different instants in similar objects of the
application, such as a window, a button, an icon, a scroll bar,
an output device, a control, or a file, and so forth. The appli-
cation layer can access the corresponding driver layer through
the handle.

However, if a third-party application views the handle
through a tool, and open the driver layer through the handle,
the third-party application can send to the driver layer an /O
control function (IOCTL) which manages I/O channels in the
device driver layer, so as to directly control the driver layer. If

15

20

25

35

40

45

50

55

2

the third-party application is a malicious software, a com-
puter of a user can be vandalized by the third-party applica-
tion.

SUMMARY OF THE INVENTION

Various examples of the present disclosure provide a
method for protecting a driver, including:

encrypting a program file;

sending an Input/Output Request Package (IRP) and the
encrypted program file;

receiving the IRP and the encrypted program file,

decrypting the encrypted program file, and verifying the
decrypted program file; and,

if verification is passed, returning a handle, otherwise, not
returning the handle.

Various examples of the present disclosure provide a sys-
tem for protecting a driver, including an application layer
module and a driver layer module, wherein

the application layer module includes:

an encryption sub-module, to encrypt a program file; and,

afirst communication sub-module, to send an Input/Output
Request Package (IRP) and the encrypted program file
to a second communication sub-module of the driver
layer module;

the driver layer module includes:

the second communication sub-module, to receive the IRP
and the encrypted program file; and,

a decryption and verification sub-module, to decrypt the
encrypted program file, and verify the decrypted pro-
gram file;

wherein the second communication sub-module is further
to return a handle to the first communication sub-module
if verification is passed, otherwise, not return the handle
to the first communication sub-module.

In the above-mentioned method and system for protecting
the driver, the program file of the application layer is
encrypted, and the encrypted program file is sent when the
IRP is sent; the driver layer decrypts and verifies the
encrypted program file, and returns the handle to the applica-
tion layer when the verification is passed, so that the applica-
tion layer can access the driver layer through the handle; ifthe
verification is not passed, the driver layer rejects the access of
the application layer. Therefore, a legitimate application layer
can communicate with the driver layer, a suspicious program
is prevented from accessing the driver layer, and the security
of the driver layer is improved.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a flowchart illustrating a method for protecting a
driver in accordance with an example of the present disclo-
sure.

FIG. 2 is a flowchart illustrating a process for encrypting a
program file in accordance with an example of the present
disclosure.

FIG. 3 is a flowchart illustrating a process for decrypting
and veritying an encrypted program file in accordance with an
example of the present disclosure.

FIG. 4 is a schematic diagram illustrating an internal struc-
ture of a system for protecting a driver in accordance with an
example of the present disclosure.

DETAILED DESCRIPTION OF THE INVENTION

Hereinafter, the present disclosure will be described in
further detail with reference to the accompanying drawings
and examples.

US 9,317,707 B2

3

As shown in FIG. 1, in an exemplary example, a method for
protecting a driver may include processes as follows.

In block S110, a program file is encrypted, the encrypted
program file and an IPR are sent.

In this case, asymmetric encryption is performed to the
program file of the application layer, which means that the
asymmetric encryption is performed to an application file. In
the example, the asymmetric encryption may be the RSA
algorithm. In this case, the asymmetric encryption means that
encryption and decryption do not use a same key. Usually,
there are two keys, which are respectively referred to as a
“public key” and a “private key”. An encrypted file cannot be
open unless these two keys are used in pairs. The “public key”
can be published to the public, on the contrary, the “private
key” could not be published to the public, but is known by a
unique holder. The RSA public key encryption algorithm,
which is an asymmetric encryption algorithm, is developed
by Ron Rivest, Adi Shamirh and LenAdleman in 1977. The
RSA algorithm is applied to data encryption, and can also be
applied to a digital signature algorithm. The RSA algorithm is
easy to understand and operate, and is used widely. The RSA
algorithm has a high encryption security, and is difficult to be
cracked.

The application layer may send an 1/O request when the
application layer accesses the driver layer. The /O request
may be converted into the IRP, and the encrypted program file
is send at the same time, so that the driver layer may verify an
identity of the application layer.

In an example, the operation of sending the IRP and the
encrypted program file may include sending the IRP through
a process, wherein there is a corresponding relationship
between an identifier (PID) of the process and a path of the
encrypted file.

In another example, the operation of sending the IRP and
the encrypted application file may include sending the IRP
through a process, wherein the path of the encrypted file is
stored in a process structure body (EPROCESS) of the pro-
cess.

The application layer may send an access request through
the [/O-related function CreateFile. The corresponding IRP,
ie., the IRP_MIJ_CREATE, may be created. The IRP_
MI_CREATE may be dispatched to a dispatch function in the
driver layer.

In block S120, the IRP and the encrypted program file are
received, the encrypted program file is decrypted, and the
decrypted program file is verified.

In an example, when the IRP is sent through the process in
block S110, and there is the corresponding relationship
between the PID of the process and the path of the encrypted
program file, accordingly, the operation of receiving the IRP
and the encrypted program file in block S120 may include
receiving the IRP through the process, obtaining the path of
the encrypted program file according to the PID of the pro-
cess, and obtaining the encrypted program file according to
the path of the encrypted program file.

In another example, when the IRP is sent through the
process in block S110, and the path of the encrypted program
file is stored in the EPROCESS of the process, accordingly,
the operation of receiving the IRP and the encrypted program
file in block S120 may include receiving the IRP through the
process, analyzing the EPROCESS of the process to obtain
the path of the encrypted program file, and obtaining the
encrypted program file according to the path of the encrypted
program file.

After receiving the IRP and the encrypted program file of
the application layer, the driver layer may decrypt the
encrypted program file of the application layer. In this case,

25

40

45

50

55

4

the encrypted program file may be decrypted using the RSA
algorithm. The decrypted program file is verified. If the veri-
fication is passed, a handle of the driver layer is returned to the
application layer, so that the application layer may access the
driver layer according to the handle. If the verification is not
passed, the driver layer may reject the access of the applica-
tion layer.

In block S130, it is determined whether the verification is
passed, and an operation in block S140 is performed when the
verification is passed, otherwise, an operation in block S150
is performed.

In block S140, the handle is returned. The handle of the
driver layer is returned.

In block S150, the handle is not returned.

In an exemplary example, as shown in FIG. 2, the process
for encrypting the program file may include operations as
follows.

In block S210, the program file is read out.

Inthis case, the program file of the application layer is read
out firstly. When the program file has a Portable Execute (PE)
format, contents except a DOS header, a PE header, and a
section table of the PE file are read out.

Inblock 8220, a message digest value of the program file is
calculated.

In this case, if the format of the program file is the PE
format, the message digest value of the obtained contents
except the DOS header, the PE header, and the section table of
the PE file is calculated. Usually, the message digest value
may be a MDS value.

In block S230, the asymmetric encryption is performed to
the message digest value.

In this case, the asymmetric encryption is performed to the
calculated message digest value, for example, the encryption
is performed using the RSA algorithm.

In block S240, the asymmetrically-encrypted message
digest value is written to an end of the program file.

In this case, the encrypted message digest value is written
to the end of the program file of the application layer, so that
the encrypted message digest value may be sent together with
the program file of the application layer.

In an exemplary example, as shown in FIG. 3, the process
of decrypting the encrypted program file, verifying the
decrypted program file, returning the handle if the verification
is passed, otherwise, terminating the process may include
operations as follows.

In block S310, the asymmetrically-encrypted message
digest value is read out and decrypted to obtain the decrypted
message digest value.

In this case, the program file of the application layer is
obtained, and the end of the program file is read out to obtain
the asymmetrically-encrypted message digest value. The
asymmetrically-encrypted message digest value is decrypted
using the RSA algorithm to obtain the decrypted message
digest value.

Inblock S320, a message digest value of the program file is
calculated, and the calculated message digest value is com-
pared with the decrypted message digest value.

In this case, the driver layer may calculate the message
digest value of the program file of the application layer. Ifthe
program file is a PE file, wherein the PE file may include a
DOS header, a PE file flag, an image file, and an optional
image header, the PE file flag may be the PE header, the image
file may be basic information of the PE file, and the optional
image header may be the section table, the message digest
value of the contents except the DOS header, the PE header
and the section table of the PE file is calculated. The calcu-
lated message digest value is compared with the decrypted

US 9,317,707 B2

5

message digest value. If the calculated message digest value
is the same as the decrypted message digest value, the handle
of the driver layer is returned to the application layer, so that
the application layer may access the driver layer through the
handle. If the calculated message digest value is different
from the decrypted message digest value, the driver layer may
reject the access of the application layer.

In block S330, it is determined whether the calculated
message digest value is the same as the decrypted message
digest value. If the calculated message digest value is the
same as the decrypted message digest value, an operation in
block S340 is performed, otherwise, an operation in block
S350 is performed.

In block S340, the handle is returned.

In block S350, the handle is not returned.

As shown in FIG. 4, an exemplary example of the present
disclosure provides a system for protecting a driver, including
an application layer module 410 and a driver layer module
420.

Inthe example, the application layer module 410 may be an
application. The application layer module 410 may include an
encryption sub-module 411 and a first communication sub-
module 413, wherein the encryption sub-module 411 and the
first communication sub-module 413 are connected with each
other. The encryption sub-module 411 may be configured to
encrypt a program file. The first communication sub-module
413 may be configured to send an IRP and the encrypted
program file to the driver layer module 420.

The encryption sub-module 411 may be configured to per-
form asymmetric encryption to the program file of the appli-
cation layer. In the example, the asymmetric encryption may
be performed using the RSA algorism.

When the application layer module 410 accesses the driver
layer module 420, the application layer module 410 may send
an [/O request through the first communication sub-module
413. The 1/O request is converted into the IRP, at the same
time, the first communication sub-module 413 may send the
encrypted program file, so that the driver layer module 420
may verify an identity of the application layer module 410.

In an example, the application layer module 410 may send
an access request through an I/O-related function CreateFile.
The corresponding IRP with a creating type (IRP_MJ_CRE-
ATE) may be created. The IRP_MJ_CREATE may be dis-
patched to a dispatch function in the driver layer module 420.

In an example of the present disclosure, the driver layer
module 420 may be a driver program. The driver layer module
420 may include a second communication sub-module 421
and a decryption and verification sub-module 423, wherein
the second communication sub-module 421 and the decryp-
tion and verification sub-module 423 are connected with each
other.

The second communication sub-module 421 may be con-
figured to receive the IRP and the encrypted program file.

In an example, the first communication sub-module 413 is
configured to send the IRP through a process, wherein there is
a corresponding relationship between a PID of the process
and a path of the encrypted program file. Accordingly, the
second communication sub-module 421 may be configured to
receive the IRP through the process, obtain the path of the
encrypted program file according to the PID of the process,
and obtain the encrypted program file according to the path of
the encrypted program file.

In another example, the first communication sub-module
413 may be configured to send the IRP through the process,
wherein the path of the encrypted program file is stored in the
EPROCESS of'the process. Accordingly, the second commu-
nication sub-module 421 may be configured to receive the

15

25

40

45

6

IRP through the process, analyze the EPROCESS of the pro-
cess to obtain the path of the encrypted program file, and
obtain the encrypted program file according to the path of the
encrypted program file.

The decryption and verification sub-module 423 may be
configured to decrypt the encrypted program file, and verify
the decrypted program file. When the verification is passed,
the second communication sub-module 421 may return a
handle of the driver layer to the first communication sub-
module 413 of the application layer module 410. When the
verification is not passed, the second communication sub-
module 421 does not return the handle to the first communi-
cation sub-module 413.

The second communication sub-module 421 of the driver
layer module 420 may send, after receiving the IRP and the
encrypted program file of the application layer, the IRP and
the encrypted program file to the decryption and verification
sub-module 423. The decryption and verification sub-module
423 may decrypt the encrypted program file, for example, the
decryption and verification sub-module 423 may decrypt the
encrypted program file using the RSA algorithm. Then, the
decryption and verification sub-module 423 may verify the
decrypted program file of the application layer. If the verifi-
cation is passed, the handle is returned to the application layer
module 410, so that the application layer module 410 may
access the driver layer module 420 according to the handle; if
the verification is not passed, the driver layer module 420 may
reject the access of the application layer module 410.

In an example, the encryption sub-module 411 may be
further configured to read out the program file, calculate a
message digest value of the program file, perform the asym-
metric encryption to the message digest value, and write the
asymmetrically-encrypted message digest value into the end
of the program file.

In this case, the encryption sub-module 411 may read out
the program file of the application layer firstly. The program
file of the application layer may be a PE file, which includes
a DOS header, a PE file flag, an image file, and an optional
image header. Herein, the PE file flag is the PE header, the
image file is basic information of the PE file, and the optional
image header is the section table. The encryption sub-module
411 may read out contents other than the DOS header, the PE
header, and the section table of the PE file, calculate the
message digest value of the contents other than the DOS
header, the PE header, and the section table of the PE file,
perform the asymmetric encryption to the calculated message
digest value, and write the asymmetrically-encrypted mes-
sage digest value into the end of the program file. In this case,
the RSA algorithm may be employed to perform the asym-
metric encryption.

In an example of the present disclosure, the decryption and
verification sub-module 423 may be configured to read out
the asymmetrically-encrypted message digest value, decrypt
the asymmetrically-encrypted message digest value to obtain
the decrypted message digest value, calculate a message
digest value of the program file, and compare the calculated
message digest value with the decrypted message digest
value. When the calculated message digest value is the same
as the decrypted message digest value, the second communi-
cation sub-module 421 of the driver layer module 420 may
return the handle to the first communication sub-module 413
of the application layer module 410. When the calculated
message digest value is different from the decrypted message
digest value, the second communication sub-module 421 of
the driver layer module 420 does not return the handle to the
first communication sub-module 413 of the application layer
module 410.

US 9,317,707 B2

7

The decryption and verification sub-module 423 may be
configured to obtain the program file of the application layer,
read the end of the program file to obtain the asymmetrically-
encrypted message digest value, and decrypt, using the RSA
algorithm, the asymmetrically-encrypted message digest
value to obtain the decrypted message digest value. The
decryption and verification sub-module 423 may be config-
ured to calculate the message digest value of the program file
of'the application layer. In this case, if the program file has a
PE format, the message digest value of the contents other than
the DOS header, the PE header, and the section table of the PE
file is calculated. The decryption and verification sub-module
423 may compare the calculated message digest value with
the decrypted message digest value. If the calculated message
digest value is the same as the decrypted message digest
value, the handle is returned to the first communication sub-
module 413 of the application layer module 410 through the
second communication sub-module 421, so that the applica-
tion layer module 410 may access the driver layer module 420
according to the handle. If the calculated message digest
value is different from the decrypted message digest value,
the driver layer module 420 may reject the access of the
application layer module 410.

The decryption and verification sub-module 423 may be
further configured to decrypt, in the IRP with the creating
type (IRP_MJ_CREATE), the encrypted program file and
verify the decrypted program file. When the verification is
passed, the application layer module 410 may access the
driver layer module 420 through the handle; create, through
an [/O-related function such as the function of reading a file
(ReadFile) and the function of writing a file (WriteFile),
corresponding IRPs such as an IRP with a reading type (IRP_
MI_READ) and an IRP with a writing type (IRP_
MI_WRITE); and dispatch the IRP_MJ_READ and the IRP_
MI_WRITE to a dispatch function of the driver layer module
420 to read and write the driver layer.

In the above-mentioned method and system for protecting
the driver, the program file of the application layer is
encrypted, and the encrypted program file is sent when the
IRP is sent; the driver layer decrypts and verifies the
encrypted program file, and returns the handle to the applica-
tion layer when the verification is passed, so that the applica-
tion layer can access the driver layer through the handle; if the
verification is not passed, the driver layer rejects the access of
the application layer. Therefore, a legitimate application layer
can communicate with the driver layer, a suspicious program
is prevented from accessing the driver layer, and the security
of the driver layer is improved.

In addition, a message digest value of the program file is
calculated. A message digest value calculated by the applica-
tion layer is compared with a message digest value calculated
by the driver layer, so that it is convenient to perform the
verification. Further, the RSA algorism is used to perform the
asymmetric encryption or decryption, so that a high security
is achieved.

What has been described and illustrated herein is an
example of the present disclosure along with some of its
variations. The terms, descriptions and figures used herein are
set forth by way of illustration only and are not meant as
limitations. Many variations are possible within the spirit and
scope of the disclosure, which is intended to be defined by the
following claims—and their equivalents—in which all terms
are meant in their broadest reasonable sense unless otherwise
indicated.

5

20

40

45

50

65

8

The invention claimed is:

1. A method for protecting a driver on a computer, the
method comprising:

receiving an Input/Output Request Package (IRP) and an

encrypted program file from an application, wherein the
encrypted program file is contained in the IRP, wherein
the IRP defines how the application accesses the driver,
and wherein the encrypted program file is to identify the
application;

decrypting the encrypted program file; verifying the

decrypted program file; and,

if verification is passed, returning a handle to the applica-

tion, or otherwise, not returning the handle to the appli-
cation.

2. The method of claim 1, wherein

prior to receiving the IRP and the encrypted program file,

the method further comprises: the application

sending the IRP and the encrypted program file, which

comprises:

sending the IRP through a process,

wherein there is a corresponding relationship between an

identifier (PID) of the process and a path of the
encrypted program file; and

receiving the IRP and the encrypted program file com-

prises:

receiving the IRP through the process;

obtaining the path of the encrypted program file according

to the PID of the process; and,

obtaining the encrypted program file according to the path

of the encrypted program file.

3. The method of claim 1, wherein

prior to receiving the IRP and the encrypted program file,

the method further comprises: the application sending
the IRP and the encrypted program file, which com-
prises:

sending the IRP through a process,

wherein a path of the encrypted program file is stored in a

process structure body (EPROCESS) of the process; and
receiving the IRP and the encrypted program file com-
prises:

receiving the IRP through the process;

analyzing the EPROCESS of the process to obtain the path

of the encrypted program file; and,

obtaining the encrypted program file according to the path

of the encrypted program file.

4. The method of claim 1, wherein prior to receiving the
IRP and the encrypted program file, the method further com-
prises encrypting a program file, which comprises:

reading out the program file;

calculating a first message digest value of the program file;

performing asymmetric encryption to the first message

digest value; and,

writing the asymmetrically-encrypted first message digest

value into an end of the program file.

5. The method of claim 4, wherein decrypting the
encrypted program file, verifying the decrypted program file,
if the verification is passed, returning the handle to the appli-
cation, otherwise, not returning the handle to the application
comprises:

reading out the asymmetrically-encrypted first message

digest value;

decrypting the asymmetrically-encrypted first message

digest value to obtain the first message digest value;
calculating a second message digest value of the program
file;

comparing the second message digest value with the first

message digest value; and,

US 9,317,707 B2

9

if the second message digest value is the same as the first
message digest value, returning the handle to the appli-
cation, otherwise, not returning the handle to the appli-
cation.
6. The method of claim 5, wherein the asymmetric encryp-
tion or decryption is performed using a RSA algorism.
7. The method of claim 1, wherein a type of the IRP is a
creating type, and
decrypting the encrypted program file and verifying the
decrypted program file comprises:
decrypting, in the IRP with the creating type, the encrypted
program file and verifying the decrypted program file.
8. A system for protecting a driver, comprising:
a processor, and
a non-transitory storage medium on which is to store
machine readable instructions that when executed by the
processor cause the processor to:
receive an Input/Output Request Package (IRP) and an
encrypted program file from an application, wherein the
encrypted program file is contained in the IRP package,
the IRP defines a method of the application accessing the
driver, and the encrypted program file is to identify the
application;
decrypt the encrypted program file, and verify the
decrypted program file; and
return a handle to the application
if verification is passed, or otherwise, not return the handle
to the application.
9. The system of claim 8, wherein
the machine readable instructions when executed by the
processor cause the processor to:
prior to receiving the IRP and the encrypted program file
from the application, send the IRP through a process;
wherein there is a corresponding relationship between
an identifier (PID) of the process and a path of the
encrypted program file; and
receive the IRP through the process, obtain the path of the
encrypted program file according to the PID of the pro-
cess, and obtain the encrypted program file according to
the path of the encrypted program file.
10. The system of claim 8, wherein the machine readable
instructions when executed by the processor cause the pro-
cessor to:

10

15

20

25

30

35

40

10

prior to receiving the IRP and the encrypted program file,

send the IRP through a process; wherein a path of the

encrypted program file is stored in a process structure
body (EPROCESS) of the process; and

receive the IRP through the process, analyze the EPRO-

CESS of'the process to obtain the path of the encrypted
program file, and obtain the encrypted program file
according to the path of the encrypted program file.

11. The system of claim 8, wherein the machine readable
instructions when executed by the processor cause the pro-
cessor to: read out a program file, calculate a first message
digest value of the program file, perform asymmetric encryp-
tion to the first message digest value, and write the asym-
metrically-encrypted first message digest value into an end of
the program file.

12. The system of claim 11, wherein the machine readable
instructions when executed by the processor cause the pro-
cessor to:

read out the asymmetrically-encrypted first message digest
value;

decrypt the asymmetrically-encrypted first message digest
value to obtain the first message digest value;

calculate a second message digest value of the program
file; and
compare the second message digest value with the first
message digest value;
return the handle to the application if the second message
digest value is the same as the first message digest value,
otherwise, not return the handle to the application.
13. The system of claim 12, wherein the machine readable
instructions when executed by the processor cause the pro-
cessor to:

perform the asymmetric encryption or decryption using a
RSA algorism.

14. The system of claim 12, wherein a type of the IRP is a
creating type, the machine readable instructions when
executed by the processor cause the processor to

decrypt, in the IRP with the creating type, the encrypted

program file and verify the decrypted program file.

#* #* #* #* #*

